
N96- i2934

BB CLIPS:-Blackboard Extensions to CLIPS

Robert A. Orchard, Aurora C. Diaz

Lab for Intelligent Systems, Division of Electrical Engineering
National Research Council of Canada

Ottawa, CANADA K1A 0R6

NRCC Publication No. 31505

aurora@ ai.dee.nrc.ca, bob@ai.dee.nrc.ca

A_t

This paper describes a set of extensions made to CLIPS version 4.3 [l] that provide
capabilities similar to the blackboard control architecture described by Hayes-Roth [2].
There are three types of additions made to the CLIPS shell. The first extends the syntax
to allow the specification of blackboard locations for CLIPS facts. The second

implements changes in CLIPS roles and the agenda manager that provide some of the
powerful features of the blackboard control architecture. These additions provide
dynamic prioritization of rules on the agenda allowing control strategies to be
implemented that respond to the changing goals of the system. The final category of
changes support the needs of continuous systems, including the ability for CLIPS to
continue execution with an empty agenda.

Keywords: CLIPS, blackboard, dynamic control

l, Introduction

This paper describes changes that add a blackboard control architecture to CLIPS version 4.3
and enable the operation of continuous systems. This extended version of CLIPS is called
BB CLIPS.

One class of modifications implements changes in the syntax of CLIPS, allowing the facts base

to be partitioned into appropriate user defined blackboards and levels within a blackboard. A
second class implements changes in CLIPS rules and the agenda manager to incorporate some
of the powerful features of the blackboard control architecture. These include modifications
that allow for (1) a more detailed description of the features of a rule in its declare section, (2)

the use of special rules to manage problem-solving control and strategy decisions, and (3) the
use of a combining function to bring together the current control and strategy decisions with the
features of the rules to calculate the current priority of each rule on the agenda. A third class of

modification implements changes in the functionality of CLIPS to facilitate the operation of
continuous systems. These enhancements include (1) the extension of the run command to
receive other parameters that allow BB_CLIPS to continue executing even with an empty
agenda, (2) the addition of runstart and runstop functions (very much like the exec functions
of CLIPS) which are invoked whenever the run command is executed or terminated, and (3)

581

the addition of a function that, when executed, changes the recency control strategy from most-
recent tO least-recenL

The use of the above modifications are optional and existing CLIPS programs will execute

correctly with no changes. In addition, it should be noted that these modifications add very
little runtime overhead (in some cases it is faster than the unmodified CLIPS).

Section 2 describes changes made to CLIPS to implement the blackboard control architecture

and discusses the ftrst two types of modification. Section 3 describes the changes that enable
the operation of continuous systems. And finally some discussion of the use and future of
BB_CLIPS is presented in section 4.

2. Blackboard Architecture

A blackboard-based system consists of three basic components:

1. The knowledge sources which are separate and independent modules of knowledge
needed to solve the problem.

. The global blackboard structure that contains the problem-solving state data. The
knowledge sources post changes to the blackboard that incrementally build a solution to
the problem. Communication and interaction among the knowledge sources are through
this blackboard.

3. The scheduler that supervises knowledge source execution and blackboard access.

In BB_CLIPS each CLIPS rule serves as a knowledge source, its facts base as the blackboard,
and its agenda manager as the scheduler.l

2.1. Specifying Blackboard Locations

A blackboard-based system is usually organized into one or more blackboards that are
partitioned into various levels according to the needs of the application (see Figure 1). The
syntax of the facts and patterns in CLIPS has been modified to allow the system designer to
clearly specify the two components of the blackboard data; the blackboard entry or relation
which is the information content of the data and the blackboard specification which indicates
the location within the blackboard structure where this information is stored.

The following (1) illustrates the syntax of a fact that is associated with a particular blackboard
and placed at a specified level within that blackboard.

(status PUMPI ON) Sin (component_bb pump 100) (I)

The relation status contains the information that PUMPI is ON and this information is found

in the componentbb blackboard with value pump in the component type level and value 100
in the time level.

lln this document the term ru/e and agenda manager are used when talking about BB_CLIPS and knowledge
source and scheduler when talking about the blackboard archilecttm: in general.

582

In general a blackboard specification has the following syntax:

Sin (bb_name levell ... leveln)

where Sin is the delimiter separating the relation information and the blackboard specification.
The information between the parentheses identifies the name of the blackboard and any
sublevels within it.

Blackboard

Level 1 (c_type slot)

Level 2 (time slot)

(templatename)

tank pump valve

Figure 1 - Blackboard Structure

With CLIPS version 4.3, templates may be used to describe a relation more fully. Similarly, in
BB_CLIPS 4.3, a template can be used to describe the relation and another to describe the
blackboard specification. Consider the following template definitions:

(deftemplate status (field c_instance (type WCiRD)) (field has._value (type WORD)))
(deftcmplate component_bb (field c_type (type WORD) (field time (type NUMBER)))

Fact (1) above may be rewritten, given the above template definitions, as:

(status (c_instanee PUMP1) (has_value ON))
Sin (component_bb (c_type pump) (time 100)) (2)

No distinction is made between templates used to describe relations and those used to describe

blackboard specifications. Any operation that is valid for a relation template is valid for a
blackboard specification template. Thus, to change the blackboard specification and one of the
relation slots for fact (2) above, the following modify command could be used:

583

(modify ?fact_id (has_value OFF) Sin (time 200))

This modify command retracts the old fact (status PUMPI ON) Sin (component_bb pump 100)
and asserts the new fact (status PUMP1 OFF) Sin (component_bb pump 200). The fact must
have bccn previouslybound to?fact_id.

For a single fact, template and non-template relations and blackboard specifications may bc

mixed 2. The modify command may be used only for templates, therefore, given a fact that has
a non-template relation and a template blackboard specification, only the slot values in the
blackboard specification may be modified.

2.2. Blackboard Control Architecture Features

The blackboard architecture has been implemented in many different ways. One such
implementation, developed at the Knowledge Systems Lab at Stanford University, allows the
system to reason about and explicitly represent control decisions on knowledge source firing. It
is called the blackboard control architecture [2]. This allows for the unification of goal-directed
and data-directed control which forms the relationship between actions and results that is
needed in order to make intelligent control decisions [3].

The blackboard control architecture separates knowledge sources into two types. The first is
used to solve the domain problem and knowledge sources of this type arc called domain
knowledge sources. The second deals with solving the control problem; that is, to determine
which of the potential actions (rule firings) to perform at each point of the problem-solving
cycle.These arc calledcontrolknowledge sources and they embody the strategyand control

knowledge or recta-levelknowledge of thesystem. Them arc alsotwo typesof blackboards.

One type arc calleddomain blackboardsand containdecisionsmade when solvingthedomain
problem. The other hold decisionsmade when solvingthecontrolproblem and arcreferredto

as control blackboards. Also there isa singlescheduler thatsupervisesknowledge source

execution and blackboard access for both types of knowledge source and blackboard.The
scheduler decides which knowledge source toexecute and considers(I) the featuresof the

knowledge sources which have been triggeredand arc currentlyon the agenda, (2) the

decisionsthat have been posted on the controlblackboard(s),and (3) some combining or

integration function to determine current priorities for the knowledge sources on the agenda.

In BB_CLIPS there is no difference in the syntax that distinguishes domain and control rules.
Also, the organization of both the control and domain blackboards are left to the system
designer. The next subsections describe additions made to CLIPS that allow flexible and
dynamic prioritizationof rules.

2.2.1. Declare Section

Standard CLIPS allows a static salience to bc specified in the declare section of a rule
definition. This is used to order the rules found on the agenda. In BB CLIPS, the declare
section is enhanced to allow a more detailed specification of the features of a rule. Feature

2E.ach template may have only one muldfield Mot. For a fact with a mmplate relation and a template blackboard
specification, the template relation may have one multifield slot and the template blackboard specification may
also have one multifield slot.

584

valuesmay be integers,elementsof a predefineclset (e.g. low, alarm), or a blackboard

specification (e.g. Sin (interface_bb opcrator_cmd)).

Consider the following declare section of a rule:

(declare
(salience 100)

(problem alarm)
(efficiency low)
(importance5)
(focus Sin (interface_bb operator_cmd))

(3)

This declares that the rule belongs to the set of rules dealing with the alarm problem and that it
has a salience of 100, a low efficiency, an importance of 5 and will produce a blackboard entry

in the operator_emd level of the interfaee_bb blackboard. This interpretation is determined by
the system designer, as are the features that are needed for the problem at hand.

The declare section of each rule is validated when the rule is loaded. The rule compiler will

check the syntax of a feature and ensure that the values for each feature are allowable.
Therefore, each feature must be identified by the system designer in a file containing
declaration definitions for each feature that is to be allowed in the rules. This file is compiled

and linked with BB_CLIPS providing the predetermined set of features 3. The system designer

specifies the feature names and the valid values that these features may take. For a feature of
type integer this means defining a valid range; for a feature of type set this means enumerating
the valid set members; and for a feature of type blackboard specification, no validation is done
because the blackboard organization is determined dynamically. Below is part of such a feature
declaration.

struct declare_template valid_declarations D =
I

{"salience", SALIENCE_FEATURE, &salience_range ,NULL},
{"reliability",INTEGER_b'EATURE, &reliability_range, NULL},
{"efficiency", SET_FEATURE, NULL, &efficiency_set },
{"focus", BB_SPEC_FEATURE, NULL, NULL},
{"problem", SET_FEATURE, NULL, &problem_set},
{ "prob_typ¢", SET_FEATURE, NULL, &prob_type_set},
{"sub_type", SET_FEATURE, NULL, &sub_type_set},

};

struct set_descriptor efficiency_set =
{ 3, efficiency set_mere};

charplr efficiency_set_metal] =
{"low", "medium", "high"};

3 This is similar to the method for adding user defined functions to CLIPS. The authors acknowledge that it
would have been more flexible to allow the features to be dynamically created and loaded when BB_CLIPS starts

up and this could be considered at some furore date. Similarly the combining function used to determine dynamic
priorities would also have to be att_bed to BB_CLIPS at nmtime (this is more difficult).

585

2.2.2. Control and Intercept Rules

As stated earlier, there are separate knowledge sources that post control or metalevel decisions
on the control blackboard. These decisions are taken into account when the scheduler is

deciding which knowledge source to invoke, thereby providing dynamic prioritization of
knowledge sources. For example, a decision on the control blackboard might specify that
knowledge sources with efficiency of low or medium be given a certain weight. The scheduler

when calculating priorities, will use this weighting factor attached to the efficiency feature for
any knowledge sources that are currently triggered and for future knowledge sources as they
become triggered. Later, should this control decision be retracted, the priorities of any triggered

knowledge sources with the efficiency feature are recalculated immediately and future
knowledge sourceprioritieswillalsobe adjusted.

In BB_CLIPS decisions posted on the control blackboard are asserted in much the same way
as decisions posted on the other non-control blackboards. In addition, however, some intercept
rules need to be included which when fired invoke procedures to store these decisions in a
separate data structure which is available to the agenda manager. The assertion of the control
decision:

(efficiency 100 _ low medium) Sin (control_bb policy) (4)

might, for example, cause the following intercept rule to be instantiated and added to the
agenda.

(defrule intercept_c'f_set
(declare (salience MAX_SALIENCE))

?f <- (?feature_name ?wt .'?rune $?val) Sin (control_bb policy)
-->

(set_cf..set ?f ?featurename ?wt Wunc $?val)
)

(5)

The intercept rule (5) above calls the external function set_cf_set 4 that ensues that the function

(?func) is valid for the set type feature (_eature_name) and that the values given for the feature
($?val) are valid for the set feature. If all checks are passed, the weighting factor for the feature

(?wt)isstoredina datastructureused by the agenda manager when calculatingtheprioritiesof
the rules on the agenda.

Intercept rules usually have a maximum salience so that they are executed immediately. Once
the intercept rule illustrated in (5) is executed, all rules in the current and succeeding agendas
that declare either a low or medium efficiency are given priorities that take into account the
control decision made in (4) - until this control decision is retracted. The next two rules are

examples of intercept rules for the integer and blackboard specification features.

(defrule intereept..cf_int
(declare (problem intercept))

?f <- (?feature_name ?wt _unc $?val) Sin (control_bb policy)
-->

(set_cf_int ?f ?feature_name ?wt Rune $?val)
)

4 There are predefined external functions tohandle integer,set,and blackboardspecification features.Theseare
se_._cf..inl,seucf..set,andset._cf._BBslxx:respectively.

586

(defruleintert:cpt_cf_BBspec

(declare(problem intcrccp0)

?f<- (?wt $?BB_,,c) Sin (control_bbfocus ?type)
_-->

(sct_cf._BBspec?f?type?wt $?BBspec)

)

There are predefined functions associated with integer and set features. For integer type
features these are <, <=, >, >-, -=, !=, IN_RANGE, and NOT IN RANGE. For set type
featuresthesearc== and !=.The operationof thesemay bc changed or new functionsmay bc

added by modifying appropriatefiles.Only functionspreviously defined as valid for the

differentfeaturetypesmay bc used in factsassertedby the controlrulestoreason about the
features.For instance,ifa controlruleconcludes thatruleswith low or medium efficiency

should have a weighting factorof 100, given the currentstateof the problem, then itcould
asserta factof the form illustratedin(3).This factmakes use of the efficiencysetfeatureand

the_---(equality)functionwhich has been predcf'medforsettypefeatures.

2.2.3. Combining Function

The agenda manager inBB_CLIPS usesthefeaturedeclarationsof a ruleand controldecisions

plus some predefinedcombining functionto determine a priorityfor arule.The featuresof a
rulearc setwhen theruleisloaded and can be changed only by modifying the ruledefinition

and thenreloadingit.Controldecisionsareposted on thecontrolblackboardsand are trapped

by user-definedinterceptrules(asexplainedintheprevioussection).Upon executionof one of

the functionsset_cf._int,sct_cf._sct,or set_cf..BBspcc,theprioritiesof the rulescurrentlyon

theagenda arerecalculatedtoincorporatethenew controldecision.

A predefmed function is used to combine the control decisions and the features of the rules on
the agenda to determine the priority of a rule. Consider the following control decisions:

(problem 500 _ alarm) Sin (control_bb policy)
(200 interface_bb operator__cmd) Sin (control_bb focus strategic)
(efficiency 100 -- low medium) Sin (control_bb policy)
(importance 10 IN_RANGE 0 5) Sin (contml_bb policy)
(importance 20 INRANGE 6 10) Sin (control_bb policy)

If the combining function adds the weights assigned to the set and blackboard specification
features and adds the product of the value of the integer features and the weight assigned to
these, then a rule in the agenda with the declaration shown in (3) will have a priority of:

500 + 100 + I00 + (5 * 10) + 200 = 950.

The above combining function is defined in a file that is provided and may be modified by the
system designer as necessary to fit the problem at hand.

3. Continuous Ooeration and Other Additions

This section describes fuaher extensions made to CLIPS to address the needs of continuously

operating systems and to provide other features that were found to be useful.

587

Ta_ Window

t
Ohn_.

IIrillIliril]1IIill
I //

/_'W _ - 2.00 rain euo/u_on

3hrs,

IIIIltII111tPltiIlrllIIIilIllllllllrl
Peak Period

WARNING: exceeded maximum KW usage during

peak period (time ,, 8355)

Pump #1 is OFF (50.00 KW, 22289.00 litres)

Pump 12 is ON (25.00 KW, 2685.00 litres)_i-'-'---

Pump 13 is ON (100.00 KW, 18010.50 Utres)qr,.... .

Pump #4 is ON (75.00 KW. ;1650.00 _itms) _...._

WARNING: At 20910: Time to dlnger low is at)out
28_5 seconds for tank L2

>>> ConsJOer closing valve v2

44434 rMes fired
Run Ume is 1383.20004272 seconOs

Alarm condition: Below low mark

Turned on by operator

Has not been on for the specified
minimum on time

Figure 2 -- Test Program

588

3.1 The Run Command

Normally, CLIPS terminates when the agenda is empty. For real-time systems (or any
continuously operating system) there is need for a mechanism that allows the inference engine
to idle, waiting for events to occur without executing a dummy idle rule. In BB_CLIPS, the
run command was extended to receive any of the following parameters:

A positive integer n.
BB_CLIPS will run until n rules have executed or until the agenda is empty, whichever

comes first, e.g. (run 10)

-1.

BB_CLIPS runs until the agenda is empty, e.g. (run -1)

-2.
BB_CLIPS runs forever (in an idle state if no rules are on the agenda), e.g. (run -2)

A negative integer -n (less than -2).
BB_CLIPS runs until n rules have executed (in an idle state if no rules are on the

agenda), e.g. (run-10)

The halt function or a keyboard intercept (e.g. conn'ol-C) may halt the execution of CLIPS at
any time.

3.2 Runstart and Runstop Functions

A listof externalfunctionsthat are executed attheend of each cycle of the inferenceengine

(i.e. after each rule firing) can be created. This is done with the add exec.function of CLIPS.
In certain cases, however, it is useful to be able to execute special routines on entry or exit
from the run command. The runstart and runstop functions of BB_CLIPS provide such a
capability. Consider the situation where a simulation is being done and a clock driven by the
time of day is used to keep track of the simulated time. When the system is stopped (when n
rules have been fired after the (run -n) command or a control-C interrupt occurs, for example),
the simulated clock should not advance. When the system continues, the clock should resume
from where it left off when the system was stopped. In this case the addition of a runstan and a
runstop function will allow the appropriate adjustments to be performed.

A function is added to the list of functions to be invoked when the run command is executed by

calling the add_runstart_function and it can be removed from this list by calling the
remove_rtmstan_function. Similarly, a function is added to the list of functions called when the
run command is terminated by calling the add_runstop_function and removed with the

remove_runstop_function 5. The following are examples of calls to these four functions.

add_runstop_functionChaltTin_..'r",hahTimer);
add_runstart_functionCcontinueTimer",continueTimcr);

remove_runstop,funcfion("haltTimcr",hahTirncr);
remove_runstart_funcfionCcontinucTirncr",confinueTimcr);

5 These external functions must have been previously defined as user functions [1].

589

3.3 Recency Control Strategy

If there are a number of rules on the agenda with the same salience, CLIPS chooses the last
rule that was added to the agenda for execution (thus implementing a most-recent-first conn'ol

strategy). It has been found that for some systems it is more important to execute the first of the
rules added to the agenda (i.e. execute the least recent, as opposed to the most recent). In
BB CLIPS this is done by invoking the set_most_recent first function on the right hand side

of a rule with an argument of true or false (the system default is true) 6. The following is an

example of a rule that will set the agenda manager to give preference to rules (within the same
priority grouping) added least recently to the agenda.

(defrule change-recency
-->

(set_most reccnUfn'st false)
)

4. Discussion

The additions described in this paper have proved useful in practice. A test program was
constructed which simulates a series of tanks being fiUed by turning pumps on and emptied by
opening valves. The system monitors the tank levels trying to keep the tanks below some high
level mark and above some low level mark, raising alarms when these conditions are violated.

It also has to plan the use of the pumps such that the total power consumption at any given time
during peak periods in the day remains below some predetermined value (this is to avoid
surcharges by the power company). Additional functionality was developed to complete the
program. This included: (I) a simulator written in C to control the reading of level sensors in
the tanks and to control actuators which tam pumps on and off and open and close valves as
required; (2) a graphical interface using the NeWS [4] system on Sun microcomputers (see
Figure 2); and (3) a suitable blackboard structure to partition the problem (partially shown in
Figure I). A detailed discussion of this problem can be found in [5].

Other ways to provide the features described in this paper are being considered. For example,
allow the dynamic specification of rule features and the combining function rather than
requiring the creation of a separate version of BB_CIAPS for each problem specific set of
features; use a special assert function (control assert) to handle assertions into the control
blackboard rather than the assert function and the'intercept rules described herein; and allow the

dynamic specification of an agenda selection function which currently always selects the
highest rated rule on the agenda.

Future work may involve determining how to most effectively use CLIPS in a multiprocessor
environment and in collaboration with other expert and non-expert systems in a muhi-paradigm
environment.

6 Calling the set_mosLrecmt._first fu_tion has the same effect as executing an intercept rule in that it causes
the reordering of the agenda to occur. This, however, causes some problems for the current BB_CLIPS
implementation. It does not keep information that determines when a rule is added to the agenda. When the
current agenda is reordered, some rules that were previously at different priorities may now have the same
priority and it is not possible to determine which rule was added first to the current agenda. Subsequent agenda
additions, though, are prioritized prope_rly.

5.9.O_

References

[1]

t

Artificial Intelligence Section. CLIPS Reference Manual, Version 4.3. Lyndon B.

Johnson Space Center, August 1989.

[2] B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence, 26:251-
321, 1985.

[3] V.R. Lesser, D.D. Corkill, R.C. Whitehair, and J.A. Hernandez. Focus of Control

Through Goal Relationships. In IJCAI, pages 497-503, 1989.

[4] Sun Microsystems. NeWS Manual. 1989.

[5] A.C. Diaz, R.A. Orchard. A Prototype Blackboard Shell Using CLIPS. Submitted to the

Fifth International Conference on AI in Engineering, 1990.

591

